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[Outline] Chapter 5: Beyond CMOS devices

Fundamental limits to power dissipation
= Landauer limit
= Von Neumann architecture
= Joule heating

Emerging concepts based on 2D materials
= Memory in logic

= Excitonic devices



Information processing, energy and reversibility

Consider the NAND logic gate and its truth table
Vcc
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Logically irreversible operation: 3 different input configurations give the same output
(Ill”)
If we “destroy” the inputs and only keep the result, we have increased the entropy



Limits on computing: The Landauer limit

Erasure of N bits of information from a
physical system results in:

= An increase in entropy of
AS = kgIn(2) - N

= Energy dissipation of
AE > kgTIn(2) - N

= For 1 bit:
AE > kgT In(2) = 2.86 - 10_21]

Rolf Landauer, IBM J. Res. & Dev. (1961) kg Boltzmann constant
T temperature



Limits on switching

For a charge-based switch
= Minimum switching energy is: AEs,, = 3kpT-In(2) = 107%°]

= ~ 3x worse than Landauer
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How about the entire system?

Intel Core i7 8700K processor (2017)
= Benchmark: 217 GOPS
= Dissipated power: 86.2 W

Dissipated power 86.2 _ Ji
, = =3.97-10719
N operations 217 - 10° flops

= 6.2 - 10712 -L (64 bits)
ops

= Landauer limit:
2.86-107%1 J/ops

We are 10°X worse than the Landauer limit!



Von Neumann architecture

Von Neumann bottleneck

Memory
CPU Data

Data

logic
storage




Ch 2.1: Heat Dissipation in Small Transistors

Planar MOSFET — short channel effects; standby

power dissipation
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2nm thin Si, 1nm SiO,:

Ferain et al., Nature 479, 310 (2011)
Colinge, Sol. State El. 48, 897 (2004)

Lg>10nm



Other Types of Current

Charge current ———»

Spin current ———»

Charge current=0

Exciton current ——»

Charge current =0




Interlayer Excitons in TMDCs

Energy (eV)

MoS2 M0892 MoTe2 WS2 WSe2 WTe2

Kang, Jun, et al, APL (2013)

Fang...Javey; PNAS (2014)



Interlayer Excitons in TMDCs
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Spatial separation of charges:

* Built-in dipole moment -> manipulation
* Long lifetime ~ ns

* Large binding energy ~ 100s of meV

Related work:
Fang et al, PNAS (2014)
P. Rivera, et al. N. Com (2015)
P. Rivera, et al. Science(2016)
Hanbicki, et al. ACS Nano (2016)
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Exciton Manipulation in a Device

Exciton diffusion Excitation spot
Driving forces: VT, Vu

injection L
emission
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"

diffusion

4 um

IX emission

7 — 740 pW



Exciton Manipulation in a Device

IX emission

Exciton diffusion
Driving forces: VT, Vu

injection control .
% emission
diffusion
A

Per = OE = —p,E,(x,¥) | —— —

Simplest device:

Excitonic transistor/switch

12



Exciton manipulation in a device

Exciton diffusion governed by diffusion equation with an external potential:

Dazn D 0 (d¢ N n_ on _SE — £
9x2  kyT dx \ox T ot Per = OF = —pzE7(%, y)

laser in A n(x)

n0=GT
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Unuchek, Ciarrocchi et al. Nature (2018)



Ch 2.4: Optoelectronics and IT devices

Data load
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Excitonic Devices

I E E E o Smart Hard Drives Software Wizards Death of Web Radio

SPECTRUM
Linking With
LIGHT

100 TRANSISTORS FITIN 10PTICAL MODULATOR FITS
1SQUARE MICROMETER IN100 SQUARE MICROMETERS

Optlcal Interconnects Photonics Fail: Phoiomcs \N:I" neverbea reall option tf’ trans?od da'ta
. : from one part of a silicon chip to another. A single optical switch, aring
Let Chips Communicate e e s : vl
oscillator in this case, performs the same function as an individual

At Blazing Speeds
ik < IEEE transistor, but it takes up 10,000 times as much area.

Levi; IEEE Spectrum (2018)
Savage; |IEEE Spectrum (2002)

device size > particle size

photons: A
excitons: Bohr radius
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Room-temperature Excitonic Devices
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Unuchek, Ciarrocchi,...,Kis; Nature (2018)
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Gate Control: Switching
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Unuchek, Ciarrocchi,...,Kis; Nature (2018)
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Gate Control: Switching
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Gate Control: Enhanced Diffusion
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Logic in Memory Concept

Non Volatile
Memory

Floating
gate

Lateral Heterostructure

Heterostructure
for the gate stack

Lateral
Heterostructure
in the channel

Credit: Giuseppe lannaccone, University of Pisa
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Logic in Memory Concept

Processing unit Conventional memory
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Charge-based memory Resistance-based memory |
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Sebastian...Eleftheriou, Nat. Nanotech. (2020)
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Logic in Memory @

DRAM RRAM STT-MRAM

Performance STT-

Feature size (nm)

Cell Area 6F>2 4F? 4F? 4F? 4F2  ~256*
Write/Erase Time <10ns | 1/0.1ms | 100ns <10ms <1ns 5ms
Retention 64ms >10y >10y >10y >10y >10y
Endurance >1E16 1E4 1E9 >1E12 1E12 >1E16
Nonvolatility N Y Y Y Y Y
wed Ly

Write Energy (J/bit)  4E-15 | >2E-16 | 6E-16  2.5E-12  1E-13 -

Standby Power
(W/Gb) 1E-1 1E-3 1E-3 1E-3 1E-3 110




2D Logic with Memory HfO,

Floating

MoS, \ Gate
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D S‘ Advantages of 2D for logic in memory and flash
Vo los memory:
DS:_[ e FG = Reduced cell-to-cell interference

. - = Multilevel storage
= Possible scaling beyond 12 nm

Ve T P Si
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Programmable Inverter
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Universal Logic Gates
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Large-scale Integrated MoS, circuits

Vector-Matrix Multiplication
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Marega...Kis; Nature Electronics (2023)
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Large-scale Integrated MoS, circuits

32x32 FGFET array
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83% yield
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Marega...Kis; Nature Electronics (2023)
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In-Memory Signal Processing

Signal Filtering by Convolution
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Marega...Kis; Nature Electronics (2023)
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Recapitulation

Fundamental limits to power dissipation
= Landauer limit
= Von Neumann architecture
= Joule heating

Emerging concepts based on 2D materials
= Valley/spintronics
= Excitonic devices: currents, polarisation, valley polarisation

= Memory in logic



	Semiconductor Devices II
	[Outline] Chapter 5: Beyond CMOS devices
	Information processing, energy and reversibility
	Limits on computing: The Landauer limit
	Limits on switching
	How about the entire system?
	Von Neumann architecture
	Ch 2.1: Heat Dissipation in Small Transistors
	Other Types of Current
	Interlayer Excitons in TMDCs
	Interlayer Excitons in TMDCs
	Exciton Manipulation in a Device
	Exciton Manipulation in a Device
	Exciton manipulation in a device
	Ch 2.4: Optoelectronics and IT devices
	Excitonic Devices
	Room-temperature Excitonic Devices
	Gate Control: Switching
	Gate Control: Switching
	Gate Control: Enhanced Diffusion
	Logic in Memory Concept
	Logic in Memory Concept
	Logic in Memory
	2D Logic with Memory
	2D Logic with Memory
	Programmable Inverter
	Universal Logic Gates
	Large-scale Integrated MoS2 circuits
	Large-scale Integrated MoS2 circuits
	In-Memory Signal Processing
	Recapitulation

