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[Outline] Chapter 5: Beyond CMOS devices

Fundamental limits to power dissipation
 Landauer limit
 Von Neumann architecture
 Joule heating

Emerging concepts based on 2D materials
 Memory in logic
 Excitonic devices
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Information processing, energy and reversibility

Consider the NAND logic gate and its truth table

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

Logically irreversible operation: 3 different input configurations give the same output 
(“1”)
If we “destroy” the inputs and only keep the result, we have increased the entropy
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Limits on computing: The Landauer limit

Rolf Landauer, IBM J. Res. & Dev. (1961) 

Erasure of 𝑁𝑁 bits of information from a 
physical system results in:

 An increase in entropy of
 ∆𝑆𝑆 ≥ 𝑘𝑘𝐵𝐵ln(2) � 𝑁𝑁

 Energy dissipation of
  ∆𝐸𝐸 ≥ 𝑘𝑘𝐵𝐵𝑇𝑇ln(2) � 𝑁𝑁

 For 1 bit:
  ∆𝐸𝐸 ≥ 𝑘𝑘𝐵𝐵𝑇𝑇 ln 2 = 2.86 � 10−21𝐽𝐽

𝑘𝑘𝐵𝐵  Boltzmann constant
𝑇𝑇 temperature
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Limits on switching

For a charge-based switch
 Minimum switching energy is:  ∆𝐸𝐸𝑠𝑠𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 3𝑘𝑘𝐵𝐵 T � ln 2 ≈ 10−20 𝐽𝐽
 ≈ 3× worse than Landauer

𝑘𝑘𝐵𝐵  Boltzmann constant
𝑇𝑇 temperature

Cavin et al. J Nanopart Res (2006)
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How about the entire system?

Intel Core i7 8700K processor (2017)
 Benchmark: 217 GOPS
 Dissipated power: 86.2 W
  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
86.2

217 � 109 = 3.97 � 10−10
𝐽𝐽

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

  = 6.2 � 10−12 𝐽𝐽
𝑜𝑜𝑜𝑜𝑜𝑜

 (64 bits)

 Landauer limit: 
 2.86 � 10−21 𝐽𝐽/𝑜𝑜𝑜𝑜𝑜𝑜 

 
 We are 109×  worse than the Landauer limit!
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Von Neumann architecture
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Taken from the 
movie “Oblivion”

CPU

logic

Memory

Data 
storage

Data

Von Neumann bottleneck



Ch 2.1: Heat Dissipation in Small Transistors

Ferain et al., Nature 479, 310 (2011)
Colinge, Sol. State El. 48, 897 (2004)

ch
ox ch

ox

d dε
λ =

ε

Example:
 2nm thin Si, 1nm SiO2: Lg>10nm 

ε(Si)=11.9

To deplete the channel: Lg at least 3−5× λ

Lg

Planar MOSFET – short channel effects; standby 
power dissipation
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Other Types of Current
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Interlayer Excitons in TMDCs

Kang, Jun, et al, APL (2013)

Fang…Javey; PNAS (2014)
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Interlayer Excitons in TMDCs

Spatial separation of charges:
• Built-in dipole moment -> manipulation
• Long lifetime ~ ns
• Large binding energy ~ 100s of meV

Photoluminesce spectra

IX MoSe2 WSe2

Related work:
Fang et al, PNAS (2014)
P. Rivera, et al. N. Com (2015)
P. Rivera, et al. Science(2016)
Hanbicki, et al. ACS Nano (2016)

Kang, Jun, et al, APL (2013)

Band Diagram
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Exciton Manipulation in a Device

Exciton diffusion
  Driving forces: ∇𝑇𝑇,∇𝜇𝜇

injection

diffusion

emission

Excitation spot

IX emission 

7 – 740 μW

4 µm

4 µm
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Exciton Manipulation in a Device

Exciton diffusion
  Driving forces: ∇𝑇𝑇,∇𝜇𝜇

𝜑𝜑𝑒𝑒𝑒𝑒 = 𝛿𝛿𝛿𝛿 = −𝑝𝑝𝑧𝑧𝐸𝐸𝑧𝑧(𝑥𝑥,𝑦𝑦)

injection

diffusion

𝑥𝑥

emission
control

𝑥𝑥

𝑥𝑥

𝑦𝑦

ℰ

IX emission 

Simplest device:
 Excitonic transistor/switch
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Exciton manipulation in a device

Exciton diffusion governed by diffusion equation with an external potential:
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𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 current
𝑛𝑛 exciton concentration
𝐷𝐷 diffusion coefficient
𝜏𝜏 exciton lifetime
𝐺𝐺 generation rate
𝑅𝑅 recombination rate
𝑝𝑝 dipole moment
𝜑𝜑 exciton potential
𝑘𝑘𝐵𝐵 Boltzmann constant

𝐷𝐷
𝜕𝜕2𝑛𝑛
𝜕𝜕𝑥𝑥2

−
𝐷𝐷
𝑘𝑘𝐵𝐵𝑇𝑇

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑛𝑛 + 𝐺𝐺 −
𝑛𝑛
𝜏𝜏

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Unuchek, Ciarrocchi et al. Nature (2018)

laser in

DiffusionPumping

𝑛𝑛(𝑥𝑥)

𝑥𝑥

𝑛𝑛0 = 𝐺𝐺𝐺𝐺

𝑅𝑅 = −𝑛𝑛/𝜏𝜏

𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜑𝜑𝑒𝑒𝑒𝑒 = 𝛿𝛿𝛿𝛿 = −𝑝𝑝𝑧𝑧𝐸𝐸𝑧𝑧(𝑥𝑥,𝑦𝑦)



Ch 2.4: Optoelectronics and IT devices

Data load

Flexible devices

From the TV show Westworld 14



Excitonic Devices
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Savage; IEEE Spectrum (2002)
Levi; IEEE Spectrum (2018)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≫ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 𝜆𝜆
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒:𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟



Room-temperature Excitonic Devices

Unuchek, Ciarrocchi,…,Kis; Nature (2018)

5 µm
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Gate Control: Switching

Unuchek, Ciarrocchi,…,Kis; Nature (2018)
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Gate Control: Switching
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Gate Control: Enhanced Diffusion
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Logic in Memory Concept

Credit: Giuseppe Iannaccone, University of Pisa
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Logic in Memory Concept

Sebastian…Eleftheriou, Nat. Nanotech. (2020)

Von Neumann

Logic in memory
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Logic in Memory

Performance 
metrics DRAM Flash PCM STT-

MRAM RRAM HDD

Feature size (nm) 36 22 45 95 9 NA

Cell Area 6F2 4F2 4F2 4F2 4F2  ~256*

Write/Erase Time < 10ns 1/0.1ms 100ns <10ms <1ns 5ms

Retention 64ms >10y >10y >10y >10y >10y

Endurance >1E16 1E4 1E9 >1E12 1E12 >1E16

Nonvolatility N Y Y Y Y Y

Multi-level 
capability N Y Y N Y -

Write Energy (J/bit) 4E-15 > 2E-16 6E-16 2.5E-12 1E-13 -

Standby Power 
(W/Gb) 1E-1 1E-3 1E-3 1E-3 1E-3 110
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2D Logic with Memory

Advantages of 2D for logic in memory and flash 
memory:
 Reduced cell-to-cell interference
 Multilevel storage
 Possible scaling beyond 12 nm
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2D Logic with Memory
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Programmable Inverter
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Universal Logic Gates

Marega…Kis; Nature (2020)
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Large-scale Integrated MoS2 circuits

Marega…Kis; Nature Electronics (2023)

32×32 FGFET array
1024 devices

40 µm
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Large-scale Integrated MoS2 circuits

Marega…Kis; Nature Electronics (2023)

32×32 FGFET array
1024 devices
83% yield

851 devices
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In-Memory Signal Processing

Marega…Kis; Nature Electronics (2023)
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Recapitulation

Fundamental limits to power dissipation
 Landauer limit
 Von Neumann architecture
 Joule heating

Emerging concepts based on 2D materials
 Valley/spintronics
 Excitonic devices: currents, polarisation, valley polarisation
 Memory in logic
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